The Average Thing #3: Artifacts Over Time
%matplotlib inline
The Average Thing #3: Artifacts over time¶
In this post, we're going to explore how the number of artifacts that were received over time.
import pandas as pd
import re
import csv
import itertools
import numpy as np
from matplotlib import pyplot as plt
pd.get_option("display.max_columns")
pd.set_option("display.max_columns", 40)
data = pd.read_csv("cstmc-CSV-en.csv", delimiter = "|", error_bad_lines=False, warn_bad_lines=False)
C:\Users\dfthd\Anaconda3\envs\python2\lib\site-packages\IPython\core\interactiveshell.py:2723: DtypeWarning: Columns (9,10) have mixed types. Specify dtype option on import or set low_memory=False. interactivity=interactivity, compiler=compiler, result=result)
From the data dictionary, the first four digits of the artifact number reflect the year in which the museum acquired them. How many artifacts did the museum acquire each year?
data['YearObtained'] = data['artifactNumber'].str.extract(r'(\d\d\d\d)', expand=False)
data['YearObtained'].unique()
array(['1966', '1967', '1968', '1969', '1970', '1971', '1972', '1973',
'1974', '1975', '1976', '1977', '1978', '1979', '1980', '1981',
'1982', '1983', '1984', '1985', '1986', '1987', '1988', '1989',
'1990', '1991', '1992', '1993', '1994', '1995', '1996', '1997',
'1998', '1999', '2000', '2001', '2002', '2003', '2004', '2005',
'2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013',
'2014', '2015'], dtype=object)
Number of objects each year¶
This is a dataframe/table of the counts of data each attribute has. Besides telling us how many artifacts the museum received that year (in artifactNumber), it also tells us how many of those cases have available data.
data.groupby(by = 'YearObtained').count()
| artifactNumber | ObjectName | GeneralDescription | model | SerialNumber | Manufacturer | ManuCountry | ManuProvince | ManuCity | BeginDate | EndDate | date_qualifier | patent | NumberOfComponents | ArtifactFinish | ContextCanada | ContextFunction | ContextTechnical | group1 | category1 | subcategory1 | group2 | category2 | subcategory2 | group3 | category3 | subcategory3 | material | Length | Width | Height | Thickness | Weight | Diameter | image | thumbnail | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| YearObtained | ||||||||||||||||||||||||||||||||||||
| 1966 | 2110 | 1719 | 1540 | 787 | 193 | 1629 | 1537 | 588 | 653 | 1073 | 432 | 925 | 143 | 2107 | 1375 | 422 | 1124 | 483 | 1662 | 1662 | 1276 | 164 | 164 | 115 | 14 | 14 | 9 | 1550 | 1188 | 1221 | 742 | 57 | 20 | 54 | 1193 | 1193 |
| 1967 | 1937 | 1556 | 1074 | 1017 | 543 | 1402 | 1290 | 521 | 700 | 849 | 257 | 718 | 51 | 1937 | 735 | 349 | 749 | 456 | 1498 | 1498 | 706 | 67 | 67 | 25 | 2 | 2 | 2 | 1119 | 845 | 999 | 849 | 8 | 39 | 21 | 1257 | 1257 |
| 1968 | 2002 | 1313 | 938 | 469 | 261 | 1008 | 918 | 342 | 444 | 442 | 151 | 382 | 94 | 2002 | 478 | 224 | 385 | 215 | 1239 | 1239 | 938 | 46 | 46 | 30 | 3 | 3 | 1 | 943 | 694 | 705 | 490 | 1 | 0 | 6 | 1185 | 1185 |
| 1969 | 2793 | 2065 | 1798 | 950 | 450 | 1912 | 1674 | 610 | 753 | 1094 | 309 | 986 | 189 | 2793 | 1098 | 554 | 1139 | 689 | 2002 | 2002 | 1655 | 201 | 201 | 170 | 2 | 2 | 2 | 1809 | 1555 | 1549 | 1154 | 0 | 8 | 78 | 1934 | 1934 |
| 1970 | 2041 | 1529 | 827 | 977 | 790 | 1494 | 1128 | 370 | 537 | 464 | 139 | 417 | 123 | 2041 | 662 | 159 | 358 | 157 | 1503 | 1503 | 520 | 59 | 59 | 21 | 1 | 1 | 1 | 825 | 778 | 716 | 629 | 2 | 30 | 39 | 1253 | 1253 |
| 1971 | 1143 | 809 | 601 | 408 | 241 | 744 | 659 | 329 | 365 | 317 | 111 | 281 | 99 | 1143 | 383 | 130 | 227 | 166 | 756 | 756 | 506 | 21 | 21 | 13 | 2 | 2 | 0 | 605 | 539 | 550 | 443 | 3 | 4 | 11 | 678 | 678 |
| 1972 | 2127 | 1540 | 1528 | 932 | 286 | 1439 | 1143 | 561 | 608 | 723 | 257 | 623 | 169 | 2127 | 1495 | 197 | 457 | 278 | 1442 | 1442 | 793 | 149 | 149 | 122 | 14 | 14 | 0 | 1533 | 1258 | 1335 | 641 | 73 | 1 | 6 | 1482 | 1482 |
| 1973 | 1304 | 894 | 778 | 376 | 214 | 796 | 754 | 305 | 376 | 339 | 60 | 256 | 71 | 1304 | 740 | 206 | 336 | 234 | 848 | 848 | 685 | 44 | 44 | 31 | 0 | 0 | 0 | 780 | 733 | 749 | 645 | 5 | 1 | 17 | 784 | 784 |
| 1974 | 1226 | 894 | 666 | 505 | 324 | 775 | 713 | 431 | 503 | 365 | 131 | 319 | 123 | 1226 | 500 | 173 | 314 | 198 | 813 | 813 | 617 | 37 | 37 | 15 | 0 | 0 | 0 | 671 | 543 | 552 | 460 | 1 | 1 | 27 | 881 | 881 |
| 1975 | 1683 | 1128 | 1047 | 793 | 224 | 1097 | 1006 | 570 | 635 | 671 | 258 | 616 | 111 | 1683 | 560 | 274 | 812 | 361 | 1088 | 1088 | 881 | 38 | 38 | 14 | 4 | 4 | 4 | 1049 | 604 | 972 | 869 | 0 | 2 | 2 | 1139 | 1139 |
| 1976 | 1309 | 882 | 950 | 591 | 371 | 871 | 817 | 373 | 433 | 512 | 125 | 425 | 151 | 1308 | 697 | 208 | 535 | 352 | 812 | 812 | 684 | 33 | 33 | 21 | 3 | 3 | 2 | 953 | 688 | 759 | 607 | 0 | 3 | 4 | 890 | 890 |
| 1977 | 1419 | 943 | 953 | 522 | 264 | 908 | 848 | 420 | 483 | 440 | 112 | 379 | 154 | 1419 | 754 | 378 | 464 | 397 | 917 | 917 | 651 | 37 | 37 | 20 | 1 | 1 | 1 | 954 | 633 | 884 | 675 | 1 | 2 | 8 | 970 | 970 |
| 1978 | 3567 | 1271 | 1172 | 685 | 364 | 1214 | 1127 | 498 | 659 | 612 | 208 | 547 | 231 | 3567 | 933 | 249 | 699 | 354 | 1246 | 1246 | 859 | 101 | 101 | 78 | 2 | 2 | 1 | 1175 | 813 | 1027 | 832 | 0 | 0 | 18 | 1143 | 1143 |
| 1979 | 2322 | 1339 | 1137 | 641 | 259 | 1233 | 1175 | 500 | 648 | 508 | 122 | 360 | 154 | 2322 | 857 | 163 | 536 | 237 | 1303 | 1301 | 1114 | 121 | 121 | 101 | 27 | 27 | 21 | 1137 | 988 | 1049 | 838 | 0 | 3 | 65 | 1234 | 1234 |
| 1980 | 1633 | 1187 | 1023 | 654 | 329 | 1041 | 981 | 427 | 523 | 556 | 249 | 483 | 153 | 1633 | 725 | 195 | 466 | 306 | 1033 | 1033 | 809 | 91 | 91 | 67 | 1 | 1 | 1 | 1026 | 951 | 891 | 730 | 0 | 34 | 66 | 960 | 960 |
| 1981 | 3163 | 2168 | 2028 | 1343 | 606 | 2053 | 1993 | 911 | 1241 | 1131 | 442 | 1071 | 316 | 3163 | 1813 | 236 | 1692 | 438 | 1979 | 1979 | 1867 | 140 | 140 | 81 | 4 | 4 | 3 | 2031 | 1744 | 1807 | 1554 | 0 | 3 | 28 | 1928 | 1928 |
| 1982 | 1796 | 953 | 915 | 544 | 237 | 931 | 882 | 414 | 537 | 505 | 149 | 422 | 148 | 1796 | 778 | 244 | 572 | 297 | 926 | 926 | 707 | 142 | 142 | 65 | 3 | 3 | 1 | 920 | 807 | 828 | 605 | 10 | 0 | 22 | 896 | 896 |
| 1983 | 1671 | 775 | 811 | 408 | 234 | 747 | 717 | 332 | 439 | 449 | 112 | 419 | 99 | 1670 | 683 | 191 | 524 | 236 | 754 | 753 | 595 | 70 | 71 | 54 | 0 | 0 | 0 | 810 | 787 | 759 | 667 | 29 | 2 | 45 | 717 | 717 |
| 1984 | 2546 | 1332 | 1305 | 661 | 536 | 1262 | 1213 | 570 | 765 | 505 | 95 | 477 | 155 | 2546 | 1168 | 303 | 995 | 258 | 1267 | 1267 | 865 | 87 | 87 | 68 | 1 | 1 | 1 | 1308 | 1217 | 1310 | 1149 | 15 | 2 | 40 | 1355 | 1355 |
| 1985 | 2780 | 1346 | 1377 | 583 | 296 | 1056 | 993 | 473 | 542 | 487 | 114 | 436 | 106 | 2780 | 1100 | 396 | 783 | 371 | 1011 | 1011 | 790 | 175 | 175 | 86 | 13 | 13 | 13 | 1377 | 1199 | 1096 | 953 | 21 | 1 | 172 | 991 | 991 |
| 1986 | 2113 | 1046 | 1107 | 665 | 322 | 1030 | 974 | 370 | 496 | 588 | 220 | 520 | 129 | 2113 | 989 | 473 | 846 | 508 | 1034 | 1034 | 700 | 130 | 130 | 79 | 7 | 7 | 6 | 1108 | 1111 | 1119 | 893 | 12 | 1 | 33 | 1080 | 1080 |
| 1987 | 5122 | 3544 | 3727 | 1923 | 609 | 2975 | 3123 | 1506 | 1715 | 1898 | 411 | 1154 | 259 | 5122 | 3674 | 2476 | 3077 | 1386 | 3461 | 3461 | 3261 | 347 | 347 | 267 | 14 | 14 | 10 | 3724 | 3454 | 3364 | 1710 | 58 | 2 | 97 | 3157 | 3157 |
| 1988 | 3277 | 1736 | 2047 | 922 | 280 | 1779 | 1672 | 558 | 925 | 1048 | 348 | 941 | 203 | 3277 | 1723 | 1023 | 1481 | 783 | 1800 | 1800 | 1587 | 459 | 459 | 366 | 50 | 50 | 27 | 2046 | 1997 | 2002 | 1623 | 47 | 1 | 183 | 1579 | 1579 |
| 1989 | 1371 | 696 | 771 | 454 | 161 | 667 | 631 | 292 | 366 | 514 | 194 | 390 | 49 | 1371 | 731 | 393 | 581 | 337 | 669 | 669 | 574 | 93 | 93 | 67 | 3 | 3 | 1 | 771 | 707 | 645 | 452 | 11 | 1 | 51 | 630 | 630 |
| 1990 | 2280 | 1380 | 1320 | 861 | 146 | 1255 | 1200 | 305 | 419 | 510 | 232 | 435 | 106 | 2280 | 1332 | 626 | 791 | 336 | 916 | 916 | 728 | 379 | 379 | 126 | 23 | 23 | 20 | 1317 | 1128 | 1337 | 1057 | 34 | 2 | 159 | 941 | 941 |
| 1991 | 2818 | 2015 | 2131 | 895 | 234 | 1741 | 1708 | 555 | 630 | 1429 | 319 | 1106 | 134 | 2817 | 1937 | 635 | 1718 | 524 | 1791 | 1791 | 1603 | 328 | 328 | 214 | 48 | 48 | 46 | 2126 | 1871 | 1828 | 982 | 373 | 3 | 197 | 1732 | 1732 |
| 1992 | 4819 | 3765 | 3852 | 1712 | 608 | 3618 | 3012 | 1274 | 1340 | 2792 | 583 | 2549 | 693 | 4819 | 3711 | 1595 | 3321 | 1486 | 3747 | 3747 | 1475 | 303 | 303 | 217 | 57 | 57 | 39 | 3852 | 3480 | 3216 | 2134 | 72 | 9 | 446 | 3642 | 3642 |
| 1993 | 1367 | 1000 | 978 | 587 | 185 | 854 | 817 | 401 | 484 | 658 | 200 | 410 | 62 | 1367 | 898 | 467 | 785 | 382 | 925 | 925 | 823 | 184 | 184 | 152 | 23 | 23 | 20 | 978 | 861 | 863 | 437 | 29 | 1 | 35 | 974 | 974 |
| 1994 | 2431 | 1533 | 1479 | 952 | 153 | 1421 | 1383 | 723 | 790 | 1120 | 341 | 572 | 115 | 2431 | 1344 | 559 | 1390 | 532 | 1494 | 1494 | 809 | 227 | 227 | 206 | 26 | 26 | 25 | 1479 | 1371 | 1355 | 626 | 34 | 2 | 18 | 1478 | 1478 |
| 1995 | 5929 | 2256 | 2249 | 1374 | 366 | 2222 | 2086 | 768 | 993 | 1244 | 390 | 939 | 220 | 5929 | 2234 | 1543 | 2183 | 1218 | 2297 | 2297 | 2035 | 269 | 269 | 188 | 21 | 21 | 6 | 2249 | 1915 | 2052 | 1485 | 33 | 3 | 59 | 2242 | 2242 |
| 1996 | 2496 | 1470 | 1361 | 872 | 279 | 1402 | 1338 | 550 | 708 | 950 | 261 | 725 | 132 | 2496 | 1323 | 766 | 1239 | 685 | 1413 | 1413 | 1216 | 381 | 381 | 278 | 31 | 31 | 30 | 1360 | 1174 | 1226 | 851 | 31 | 3 | 111 | 1381 | 1381 |
| 1997 | 2966 | 1748 | 1776 | 1090 | 504 | 1706 | 1634 | 686 | 949 | 1194 | 237 | 913 | 203 | 2966 | 1715 | 1234 | 1663 | 1098 | 1745 | 1745 | 1003 | 311 | 311 | 268 | 31 | 31 | 29 | 1775 | 1463 | 1439 | 1096 | 100 | 1 | 245 | 1900 | 1900 |
| 1998 | 2641 | 1904 | 1905 | 1340 | 140 | 1926 | 1659 | 481 | 619 | 1369 | 368 | 869 | 201 | 2641 | 1883 | 1406 | 1773 | 941 | 1872 | 1871 | 1661 | 227 | 227 | 207 | 5 | 5 | 3 | 1906 | 1330 | 1517 | 964 | 18 | 2 | 310 | 2197 | 2197 |
| 1999 | 1410 | 849 | 892 | 475 | 107 | 866 | 776 | 343 | 372 | 500 | 257 | 431 | 92 | 1410 | 831 | 675 | 832 | 585 | 900 | 900 | 789 | 150 | 150 | 138 | 46 | 46 | 46 | 871 | 725 | 684 | 476 | 82 | 1 | 78 | 1041 | 1041 |
| 2000 | 1059 | 638 | 801 | 404 | 122 | 656 | 703 | 268 | 336 | 408 | 126 | 263 | 119 | 1059 | 727 | 439 | 577 | 385 | 774 | 774 | 665 | 117 | 117 | 111 | 13 | 13 | 13 | 801 | 686 | 664 | 499 | 31 | 0 | 50 | 783 | 783 |
| 2001 | 2111 | 1208 | 1147 | 498 | 163 | 1129 | 1062 | 534 | 585 | 637 | 225 | 481 | 126 | 2111 | 1094 | 848 | 973 | 671 | 1132 | 1132 | 882 | 216 | 216 | 160 | 7 | 7 | 3 | 1147 | 919 | 950 | 686 | 42 | 0 | 64 | 1299 | 1299 |
| 2002 | 3167 | 2412 | 2577 | 1059 | 354 | 2259 | 2187 | 774 | 1109 | 1970 | 1073 | 1626 | 188 | 3167 | 2555 | 2116 | 2041 | 1345 | 2433 | 2433 | 2180 | 377 | 377 | 322 | 42 | 42 | 3 | 2587 | 2199 | 1950 | 1515 | 26 | 1 | 413 | 2625 | 2625 |
| 2003 | 2235 | 1853 | 1884 | 730 | 76 | 1859 | 1724 | 423 | 453 | 1225 | 609 | 926 | 100 | 2234 | 1879 | 1480 | 1703 | 531 | 1774 | 1764 | 1436 | 265 | 265 | 225 | 24 | 24 | 7 | 1886 | 1501 | 1438 | 772 | 124 | 2 | 208 | 1697 | 1697 |
| 2004 | 5017 | 4985 | 4950 | 4087 | 181 | 4746 | 4763 | 828 | 3563 | 1836 | 736 | 1238 | 73 | 5017 | 4989 | 4270 | 4844 | 4033 | 4863 | 4863 | 1802 | 2808 | 2808 | 657 | 43 | 43 | 29 | 4989 | 4838 | 4627 | 1064 | 179 | 7 | 186 | 2896 | 2896 |
| 2005 | 742 | 742 | 738 | 493 | 167 | 658 | 603 | 241 | 274 | 556 | 173 | 395 | 27 | 742 | 734 | 319 | 592 | 258 | 683 | 683 | 583 | 138 | 138 | 116 | 23 | 23 | 23 | 742 | 681 | 648 | 306 | 203 | 3 | 84 | 700 | 700 |
| 2006 | 851 | 851 | 851 | 428 | 52 | 840 | 811 | 95 | 282 | 756 | 70 | 510 | 16 | 851 | 851 | 373 | 718 | 554 | 820 | 820 | 767 | 44 | 44 | 32 | 10 | 10 | 0 | 851 | 774 | 452 | 253 | 71 | 3 | 64 | 462 | 462 |
| 2007 | 745 | 745 | 743 | 224 | 78 | 706 | 658 | 148 | 200 | 620 | 287 | 481 | 43 | 745 | 738 | 195 | 690 | 178 | 731 | 730 | 608 | 160 | 160 | 143 | 0 | 0 | 0 | 743 | 686 | 658 | 233 | 179 | 0 | 74 | 483 | 483 |
| 2008 | 2005 | 1996 | 1998 | 1670 | 134 | 1962 | 1916 | 1302 | 1421 | 613 | 172 | 478 | 69 | 2005 | 2001 | 1419 | 1760 | 1412 | 1983 | 1982 | 646 | 1323 | 1323 | 1260 | 21 | 21 | 10 | 1998 | 1925 | 1909 | 242 | 145 | 0 | 58 | 1078 | 1078 |
| 2009 | 861 | 861 | 860 | 432 | 117 | 851 | 823 | 258 | 343 | 687 | 209 | 560 | 64 | 847 | 860 | 562 | 644 | 446 | 818 | 805 | 610 | 239 | 230 | 202 | 6 | 6 | 6 | 861 | 761 | 727 | 466 | 31 | 0 | 78 | 668 | 668 |
| 2010 | 1966 | 1966 | 1955 | 593 | 83 | 1923 | 1913 | 309 | 421 | 1784 | 1155 | 1642 | 205 | 1966 | 1957 | 1792 | 1811 | 1581 | 1957 | 1957 | 1745 | 1192 | 1188 | 1091 | 277 | 277 | 272 | 1954 | 1618 | 1500 | 1129 | 42 | 1 | 269 | 1139 | 1139 |
| 2011 | 258 | 258 | 255 | 93 | 28 | 240 | 238 | 90 | 101 | 224 | 28 | 138 | 4 | 258 | 253 | 129 | 177 | 79 | 256 | 256 | 163 | 46 | 45 | 43 | 2 | 2 | 2 | 253 | 226 | 203 | 138 | 27 | 0 | 38 | 235 | 235 |
| 2012 | 258 | 258 | 257 | 119 | 19 | 256 | 252 | 115 | 114 | 227 | 23 | 181 | 39 | 258 | 258 | 149 | 234 | 122 | 258 | 230 | 182 | 96 | 96 | 83 | 16 | 16 | 5 | 254 | 207 | 205 | 179 | 3 | 0 | 47 | 249 | 249 |
| 2013 | 589 | 589 | 587 | 259 | 54 | 582 | 575 | 164 | 187 | 556 | 85 | 426 | 51 | 588 | 588 | 370 | 573 | 359 | 588 | 588 | 539 | 172 | 172 | 168 | 25 | 25 | 20 | 586 | 516 | 490 | 393 | 1 | 0 | 86 | 516 | 516 |
| 2014 | 782 | 782 | 782 | 318 | 27 | 743 | 727 | 157 | 220 | 603 | 82 | 488 | 141 | 782 | 781 | 756 | 568 | 567 | 781 | 773 | 562 | 499 | 499 | 446 | 32 | 32 | 0 | 782 | 615 | 458 | 463 | 1 | 1 | 270 | 144 | 144 |
| 2015 | 85 | 85 | 75 | 68 | 6 | 59 | 59 | 4 | 40 | 81 | 1 | 64 | 28 | 85 | 85 | 82 | 74 | 82 | 85 | 85 | 34 | 2 | 2 | 0 | 0 | 0 | 0 | 84 | 78 | 67 | 39 | 0 | 0 | 11 | 0 | 0 |
data.groupby(by = 'YearObtained').count()['artifactNumber'].mean()
2086.86
from scipy.stats import linregress
plt.figure(figsize = (15,10))
meandata = data.groupby(by = 'YearObtained').count()['artifactNumber']
x = pd.to_numeric(meandata.index.values)
y = meandata
print linregress(x,y)
fitline = np.polyfit(x, y, deg=2)
xpoints = np.linspace(min(x),max(x),100);
plt.plot(xpoints, fitline[2] + fitline[1]*xpoints + fitline[0]*xpoints**2 , color = 'red');
plt.scatter(range(min(x),max(x)+1), meandata);
plt.tight_layout()
plt.xticks(size = 20);
plt.yticks(size = 20);
LinregressResult(slope=-17.623769507803122, intercept=37166.973205282113, rvalue=-0.20498455928950232, pvalue=0.15328806044170382, stderr=12.1460638488731)
Some wrong statistics¶
If you look above, the function method lingress from the package scipy.stats only takes one predictor (x). First, to add in the polynomial term (x2), we're going to use the sm method from the statsmodels.api package.
A glance at these results suggest that that a quadratic model fit the data better than a linear model (R2 of .25 vs. .02).
It should be said, however, that the inference tests (t-tests) from these results violate the assumption of independent errors. If you look at the "warnings" footnote, under [1], correct standard errors assume that the covariance matrix has been properly specified - it hasn't. One assumption that OLS regression makes is that the errors, or residuals of the model are independent - basically, that the points in the model are not related in some other way than the variables you're using to predict the outcome. In our case, that is untrue, as these are time series data, and years that are temporally close to one another will be related to each other.
In the future, I'm going to learn more about the types of models that are appropriate for these data (e.g., an autoregressive model)
import statsmodels.api as sm
x = pd.to_numeric(meandata.index.values).reshape(50,1)
y = np.array(meandata).reshape(50,1)
xpred = np.column_stack((np.ones(50),np.array(x)))
xpredsquared = np.column_stack((xpred,np.array(x**2)))
print sm.OLS(y,xpred,hasconst=True).fit().summary()
print sm.OLS(y,xpredsquared, hasconst=True).fit().summary()
OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 0.042
Model: OLS Adj. R-squared: 0.022
Method: Least Squares F-statistic: 2.105
Date: Sat, 07 May 2016 Prob (F-statistic): 0.153
Time: 00:51:12 Log-Likelihood: -426.05
No. Observations: 50 AIC: 856.1
Df Residuals: 48 BIC: 859.9
Df Model: 1
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [95.0% Conf. Int.]
------------------------------------------------------------------------------
const 3.717e+04 2.42e+04 1.537 0.131 -1.14e+04 8.58e+04
x1 -17.6238 12.146 -1.451 0.153 -42.045 6.798
==============================================================================
Omnibus: 17.851 Durbin-Watson: 1.535
Prob(Omnibus): 0.000 Jarque-Bera (JB): 21.727
Skew: 1.365 Prob(JB): 1.91e-05
Kurtosis: 4.724 Cond. No. 2.75e+05
==============================================================================
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 2.75e+05. This might indicate that there are
strong multicollinearity or other numerical problems.
OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 0.282
Model: OLS Adj. R-squared: 0.252
Method: Least Squares F-statistic: 9.248
Date: Sat, 07 May 2016 Prob (F-statistic): 0.000411
Time: 00:51:12 Log-Likelihood: -418.82
No. Observations: 50 AIC: 843.6
Df Residuals: 47 BIC: 849.4
Df Model: 2
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [95.0% Conf. Int.]
------------------------------------------------------------------------------
const -1.291e+07 3.26e+06 -3.956 0.000 -1.95e+07 -6.34e+06
x1 1.299e+04 3278.612 3.962 0.000 6395.437 1.96e+04
x2 -3.2677 0.824 -3.968 0.000 -4.925 -1.611
==============================================================================
Omnibus: 16.589 Durbin-Watson: 2.045
Prob(Omnibus): 0.000 Jarque-Bera (JB): 19.539
Skew: 1.287 Prob(JB): 5.72e-05
Kurtosis: 4.659 Cond. No. 8.43e+10
==============================================================================
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 8.43e+10. This might indicate that there are
strong multicollinearity or other numerical problems.